$$ \lim\limits_{x\to a} \frac{f'(x)}{g'(x)} \qquad \text{obstaja.} $$
Potem
$$\lim\limits_{x\to a} \frac{f(x)}{g(x)}=\lim\limits_{x\to a} \frac{f'(x)}{g'( x)}.$$
V nekaterih knjigah zapisano tudi kot:If \( h(x)=\frac{f(x)}{g(x)}\), \(\lim\limits_{x\to a} f(x) =\ lim\limits_{x\to a} g(x) =0\), \( g'(x) \ne 0 \), in enostranski odvodi kvocienta \( [h'(x^+), h'(x^-)]\) ali \( h'_-(x)=h'_+(x)=L \), potem $$ \lim\limits_{x\to a} \frac{f (x)}{g(x)}=\lim\limits_{x\to a} h(x)=\lim\limits_{x\to a} \frac{f'(x)}{g'(x )}=L.$$
Zdravje in Bolezni © https://sl.265health.com